Decorative site banner
Project icon

com.io7m.jodist

  • About
  • Releases
  • Manual
  • Sources
  • License
  • Issues
Maven Central Version Maven Snapshot Code Coverage

jodist


jodist is a Java API for generating .java source files. It is a modern fork of javapoet targeting whatever is the current LTS release of Java.

Source file generation can be useful when doing things such as annotation processing or interacting with metadata files (e.g., database schemas, protocol formats). By generating code, you eliminate the need to write boilerplate while also keeping a single source of truth for the metadata.

Status


This is a barely-maintained fork of a codebase that is riddled with Google libraries and is generally of a very low quality. It is in maintenance mode and needs to be replaced with something sane. Do not use!

Example


Here's a (boring) HelloWorld class:

package com.example.helloworld; public final class HelloWorld { public static void main(String[] args) { System.out.println("Hello, jodist!"); } }

And this is the (exciting) code to generate it with jodist:

MethodSpec main = MethodSpec.methodBuilder("main") .addModifiers(Modifier.PUBLIC, Modifier.STATIC) .returns(void.class) .addParameter(String[].class, "args") .addStatement("$T.out.println($S)", System.class, "Hello, jodist!") .build(); TypeSpec helloWorld = TypeSpec.classBuilder("HelloWorld") .addModifiers(Modifier.PUBLIC, Modifier.FINAL) .addMethod(main) .build(); JavaFile javaFile = JavaFile.builder("com.example.helloworld", helloWorld) .build(); javaFile.writeTo(System.out);

To declare the main method, we've created a MethodSpec "main" configured with modifiers, return type, parameters and code statements. We add the main method to a HelloWorld class, and then add that to a HelloWorld.java file.

In this case we write the file to System.out, but we could also get it as a string (JavaFile.toString()) or write it to the file system (JavaFile.writeTo()).

The Javadoc catalogs the complete jodist API, which we explore below.

Code And Control Flow


Most of jodist's API uses plain old immutable Java objects. There's also builders, method chaining and varargs to make the API friendly. jodist offers models for classes & interfaces (TypeSpec), fields (FieldSpec), methods & constructors (MethodSpec), parameters (ParameterSpec) and annotations (AnnotationSpec).

But the body of methods and constructors is not modeled. There's no expression class, no statement class or syntax tree nodes. Instead, jodist uses strings for code blocks:

MethodSpec main = MethodSpec.methodBuilder("main") .addCode("" + "int total = 0;\n" + "for (int i = 0; i < 10; i++) {\n" + " total += i;\n" + "}\n") .build();

Which generates this:

void main() { int total = 0; for (int i = 0; i < 10; i++) { total += i; } }

The manual semicolons, line wrapping, and indentation are tedious and so jodist offers APIs to make it easier. There's addStatement() which takes care of semicolons and newline, and beginControlFlow() + endControlFlow() which are used together for braces, newlines, and indentation:

MethodSpec main = MethodSpec.methodBuilder("main") .addStatement("int total = 0") .beginControlFlow("for (int i = 0; i < 10; i++)") .addStatement("total += i") .endControlFlow() .build();

This example is lame because the generated code is constant! Suppose instead of just adding 0 to 10, we want to make the operation and range configurable. Here's a method that generates a method:

private MethodSpec computeRange(String name, int from, int to, String op) { return MethodSpec.methodBuilder(name) .returns(int.class) .addStatement("int result = 1") .beginControlFlow("for (int i = " + from + "; i < " + to + "; i++)") .addStatement("result = result " + op + " i") .endControlFlow() .addStatement("return result") .build(); }

And here's what we get when we call computeRange("multiply10to20", 10, 20, "*"):

int multiply10to20() { int result = 1; for (int i = 10; i < 20; i++) { result = result * i; } return result; }

Methods generating methods! And since jodist generates source instead of bytecode, you can read through it to make sure it's right.

Some control flow statements, such as if/else, can have unlimited control flow possibilities. You can handle those options using nextControlFlow():

MethodSpec main = MethodSpec.methodBuilder("main") .addStatement("long now = $T.currentTimeMillis()", System.class) .beginControlFlow("if ($T.currentTimeMillis() < now)", System.class) .addStatement("$T.out.println($S)", System.class, "Time travelling, woo hoo!") .nextControlFlow("else if ($T.currentTimeMillis() == now)", System.class) .addStatement("$T.out.println($S)", System.class, "Time stood still!") .nextControlFlow("else") .addStatement("$T.out.println($S)", System.class, "Ok, time still moving forward") .endControlFlow() .build();

Which generates:

void main() { long now = System.currentTimeMillis(); if (System.currentTimeMillis() < now) { System.out.println("Time travelling, woo hoo!"); } else if (System.currentTimeMillis() == now) { System.out.println("Time stood still!"); } else { System.out.println("Ok, time still moving forward"); } }

Catching exceptions using try/catch is also a use case for nextControlFlow():

MethodSpec main = MethodSpec.methodBuilder("main") .beginControlFlow("try") .addStatement("throw new Exception($S)", "Failed") .nextControlFlow("catch ($T e)", Exception.class) .addStatement("throw new $T(e)", RuntimeException.class) .endControlFlow() .build();

Which produces:

void main() { try { throw new Exception("Failed"); } catch (Exception e) { throw new RuntimeException(e); } }

Literals


The string-concatenation in calls to beginControlFlow() and addStatement is distracting. Too many operators. To address this, jodist offers a syntax inspired-by but incompatible-with String.format(). It accepts $L to emit a literal value in the output. This works just like Formatter's %s:

private MethodSpec computeRange(String name, int from, int to, String op) { return MethodSpec.methodBuilder(name) .returns(int.class) .addStatement("int result = 0") .beginControlFlow("for (int i = $L; i < $L; i++)", from, to) .addStatement("result = result $L i", op) .endControlFlow() .addStatement("return result") .build(); }

Literals are emitted directly to the output code with no escaping. Arguments for literals may be strings, primitives, and a few jodist types described below.

Strings


When emitting code that includes string literals, we can use $S to emit a string, complete with wrapping quotation marks and escaping. Here's a program that emits 3 methods, each of which returns its own name:

public static void main(String[] args) throws Exception { TypeSpec helloWorld = TypeSpec.classBuilder("HelloWorld") .addModifiers(Modifier.PUBLIC, Modifier.FINAL) .addMethod(whatsMyName("slimShady")) .addMethod(whatsMyName("eminem")) .addMethod(whatsMyName("marshallMathers")) .build(); JavaFile javaFile = JavaFile.builder("com.example.helloworld", helloWorld) .build(); javaFile.writeTo(System.out); } private static MethodSpec whatsMyName(String name) { return MethodSpec.methodBuilder(name) .returns(String.class) .addStatement("return $S", name) .build(); }

In this case, using $S gives us quotation marks:

public final class HelloWorld { String slimShady() { return "slimShady"; } String eminem() { return "eminem"; } String marshallMathers() { return "marshallMathers"; } }

Types


We Java programmers love our types: they make our code easier to understand. And jodist is on board. It has rich built-in support for types, including automatic generation of import statements. Just use $T to reference types:

MethodSpec today = MethodSpec.methodBuilder("today") .returns(Date.class) .addStatement("return new $T()", Date.class) .build(); TypeSpec helloWorld = TypeSpec.classBuilder("HelloWorld") .addModifiers(Modifier.PUBLIC, Modifier.FINAL) .addMethod(today) .build(); JavaFile javaFile = JavaFile.builder("com.example.helloworld", helloWorld) .build(); javaFile.writeTo(System.out);

That generates the following .java file, complete with the necessary import:

package com.example.helloworld; import java.util.Date; public final class HelloWorld { Date today() { return new Date(); } }

We passed Date.class to reference a class that just-so-happens to be available when we're generating code. This doesn't need to be the case. Here's a similar example, but this one references a class that doesn't exist (yet):

ClassName hoverboard = ClassName.get("com.mattel", "Hoverboard"); MethodSpec today = MethodSpec.methodBuilder("tomorrow") .returns(hoverboard) .addStatement("return new $T()", hoverboard) .build();

And that not-yet-existent class is imported as well:

package com.example.helloworld; import com.mattel.Hoverboard; public final class HelloWorld { Hoverboard tomorrow() { return new Hoverboard(); } }

The ClassName type is very important, and you'll need it frequently when you're using jodist. It can identify any declared class. Declared types are just the beginning of Java's rich type system: we also have arrays, parameterized types, wildcard types, and type variables. jodist has classes for building each of these:

ClassName hoverboard = ClassName.get("com.mattel", "Hoverboard"); ClassName list = ClassName.get("java.util", "List"); ClassName arrayList = ClassName.get("java.util", "ArrayList"); TypeName listOfHoverboards = ParameterizedTypeName.get(list, hoverboard); MethodSpec beyond = MethodSpec.methodBuilder("beyond") .returns(listOfHoverboards) .addStatement("$T result = new $T<>()", listOfHoverboards, arrayList) .addStatement("result.add(new $T())", hoverboard) .addStatement("result.add(new $T())", hoverboard) .addStatement("result.add(new $T())", hoverboard) .addStatement("return result") .build();

jodist will decompose each type and import its components where possible.

package com.example.helloworld; import com.mattel.Hoverboard; import java.util.ArrayList; import java.util.List; public final class HelloWorld { List<Hoverboard> beyond() { List<Hoverboard> result = new ArrayList<>(); result.add(new Hoverboard()); result.add(new Hoverboard()); result.add(new Hoverboard()); return result; } }

Import static


jodist supports import static. It does it via explicitly collecting type member names. Let's enhance the previous example with some static sugar:

... ClassName namedBoards = ClassName.get("com.mattel", "Hoverboard", "Boards"); MethodSpec beyond = MethodSpec.methodBuilder("beyond") .returns(listOfHoverboards) .addStatement("$T result = new $T<>()", listOfHoverboards, arrayList) .addStatement("result.add($T.createNimbus(2000))", hoverboard) .addStatement("result.add($T.createNimbus(\"2001\"))", hoverboard) .addStatement("result.add($T.createNimbus($T.THUNDERBOLT))", hoverboard, namedBoards) .addStatement("$T.sort(result)", Collections.class) .addStatement("return result.isEmpty() ? $T.emptyList() : result", Collections.class) .build(); TypeSpec hello = TypeSpec.classBuilder("HelloWorld") .addMethod(beyond) .build(); JavaFile.builder("com.example.helloworld", hello) .addStaticImport(hoverboard, "createNimbus") .addStaticImport(namedBoards, "*") .addStaticImport(Collections.class, "*") .build();

jodist will first add your import static block to the file as configured, match and mangle all calls accordingly and also import all other types as needed.

package com.example.helloworld; import static com.mattel.Hoverboard.Boards.*; import static com.mattel.Hoverboard.createNimbus; import static java.util.Collections.*; import com.mattel.Hoverboard; import java.util.ArrayList; import java.util.List; class HelloWorld { List<Hoverboard> beyond() { List<Hoverboard> result = new ArrayList<>(); result.add(createNimbus(2000)); result.add(createNimbus("2001")); result.add(createNimbus(THUNDERBOLT)); sort(result); return result.isEmpty() ? emptyList() : result; } }

Names


Generated code is often self-referential. Use $N to refer to another generated declaration by its name. Here's a method that calls another:

public String byteToHex(int b) { char[] result = new char[2]; result[0] = hexDigit((b >>> 4) & 0xf); result[1] = hexDigit(b & 0xf); return new String(result); } public char hexDigit(int i) { return (char) (i < 10 ? i + '0' : i - 10 + 'a'); }

When generating the code above, we pass the hexDigit() method as an argument to the byteToHex() method using $N:

MethodSpec hexDigit = MethodSpec.methodBuilder("hexDigit") .addParameter(int.class, "i") .returns(char.class) .addStatement("return (char) (i < 10 ? i + '0' : i - 10 + 'a')") .build(); MethodSpec byteToHex = MethodSpec.methodBuilder("byteToHex") .addParameter(int.class, "b") .returns(String.class) .addStatement("char[] result = new char[2]") .addStatement("result[0] = $N((b >>> 4) & 0xf)", hexDigit) .addStatement("result[1] = $N(b & 0xf)", hexDigit) .addStatement("return new String(result)") .build();

Code block format strings


Code blocks may specify the values for their placeholders in a few ways. Only one style may be used for each operation on a code block.

Relative Arguments


Pass an argument value for each placeholder in the format string to CodeBlock.add(). In each example, we generate code to say "I ate 3 tacos"

CodeBlock.builder().add("I ate $L $L", 3, "tacos")

Positional Arguments


Place an integer index (1-based) before the placeholder in the format string to specify which argument to use.

CodeBlock.builder().add("I ate $2L $1L", "tacos", 3)

Named Arguments


Use the syntax $argumentName:X where X is the format character and call CodeBlock.addNamed() with a map containing all argument keys in the format string. Argument names use characters in a-z, A-Z, 0-9, and _, and must start with a lowercase character.

Map<String, Object> map = new LinkedHashMap<>(); map.put("food", "tacos"); map.put("count", 3); CodeBlock.builder().addNamed("I ate $count:L $food:L", map)

Methods


All of the above methods have a code body. Use Modifiers.ABSTRACT to get a method without any body. This is only legal if the enclosing class is either abstract or an interface.

MethodSpec flux = MethodSpec.methodBuilder("flux") .addModifiers(Modifier.ABSTRACT, Modifier.PROTECTED) .build(); TypeSpec helloWorld = TypeSpec.classBuilder("HelloWorld") .addModifiers(Modifier.PUBLIC, Modifier.ABSTRACT) .addMethod(flux) .build();

Which generates this:

public abstract class HelloWorld { protected abstract void flux(); }

The other modifiers work where permitted. Note that when specifying modifiers, jodist uses javax.lang.model.element.Modifier, a class that is not available on Android. This limitation applies to code-generating-code only; the output code runs everywhere: JVMs, Android, and GWT.

Methods also have parameters, exceptions, varargs, Javadoc, annotations, type variables, and a return type. All of these are configured with MethodSpec.Builder.

Constructors


MethodSpec is a slight misnomer; it can also be used for constructors:

MethodSpec flux = MethodSpec.constructorBuilder() .addModifiers(Modifier.PUBLIC) .addParameter(String.class, "greeting") .addStatement("this.$N = $N", "greeting", "greeting") .build(); TypeSpec helloWorld = TypeSpec.classBuilder("HelloWorld") .addModifiers(Modifier.PUBLIC) .addField(String.class, "greeting", Modifier.PRIVATE, Modifier.FINAL) .addMethod(flux) .build();

Which generates this:

public class HelloWorld { private final String greeting; public HelloWorld(String greeting) { this.greeting = greeting; } }

For the most part, constructors work just like methods. When emitting code, jodist will place constructors before methods in the output file.

Parameters


Declare parameters on methods and constructors with either ParameterSpec.builder() or MethodSpec's convenient addParameter() API:

ParameterSpec android = ParameterSpec.builder(String.class, "android") .addModifiers(Modifier.FINAL) .build(); MethodSpec welcomeOverlords = MethodSpec.methodBuilder("welcomeOverlords") .addParameter(android) .addParameter(String.class, "robot", Modifier.FINAL) .build();

Though the code above to generate android and robot parameters is different, the output is the same:

void welcomeOverlords(final String android, final String robot) { }

The extended Builder form is necessary when the parameter has annotations (such as @Nullable).

Fields


Like parameters, fields can be created either with builders or by using convenient helper methods:

FieldSpec android = FieldSpec.builder(String.class, "android") .addModifiers(Modifier.PRIVATE, Modifier.FINAL) .build(); TypeSpec helloWorld = TypeSpec.classBuilder("HelloWorld") .addModifiers(Modifier.PUBLIC) .addField(android) .addField(String.class, "robot", Modifier.PRIVATE, Modifier.FINAL) .build();

Which generates:

public class HelloWorld { private final String android; private final String robot; }

The extended Builder form is necessary when a field has Javadoc, annotations, or a field initializer. Field initializers use the same String.format()-like syntax as the code blocks above:

FieldSpec android = FieldSpec.builder(String.class, "android") .addModifiers(Modifier.PRIVATE, Modifier.FINAL) .initializer("$S + $L", "Lollipop v.", 5.0d) .build();

Which generates:

private final String android = "Lollipop v." + 5.0;

Interfaces


jodist has no trouble with interfaces. Note that interface methods must always be PUBLIC ABSTRACT and interface fields must always be PUBLIC STATIC FINAL. These modifiers are necessary when defining the interface:

TypeSpec helloWorld = TypeSpec.interfaceBuilder("HelloWorld") .addModifiers(Modifier.PUBLIC) .addField(FieldSpec.builder(String.class, "ONLY_THING_THAT_IS_CONSTANT") .addModifiers(Modifier.PUBLIC, Modifier.STATIC, Modifier.FINAL) .initializer("$S", "change") .build()) .addMethod(MethodSpec.methodBuilder("beep") .addModifiers(Modifier.PUBLIC, Modifier.ABSTRACT) .build()) .build();

But these modifiers are omitted when the code is generated. These are the defaults so we don't need to include them for javac's benefit!

public interface HelloWorld { String ONLY_THING_THAT_IS_CONSTANT = "change"; void beep(); }

Enums


Use enumBuilder to create the enum type, and addEnumConstant() for each value:

TypeSpec helloWorld = TypeSpec.enumBuilder("Roshambo") .addModifiers(Modifier.PUBLIC) .addEnumConstant("ROCK") .addEnumConstant("SCISSORS") .addEnumConstant("PAPER") .build();

To generate this:

public enum Roshambo { ROCK, SCISSORS, PAPER }

Fancy enums are supported, where the enum values override methods or call a superclass constructor. Here's a comprehensive example:

TypeSpec helloWorld = TypeSpec.enumBuilder("Roshambo") .addModifiers(Modifier.PUBLIC) .addEnumConstant("ROCK", TypeSpec.anonymousClassBuilder("$S", "fist") .addMethod(MethodSpec.methodBuilder("toString") .addAnnotation(Override.class) .addModifiers(Modifier.PUBLIC) .addStatement("return $S", "avalanche!") .returns(String.class) .build()) .build()) .addEnumConstant("SCISSORS", TypeSpec.anonymousClassBuilder("$S", "peace") .build()) .addEnumConstant("PAPER", TypeSpec.anonymousClassBuilder("$S", "flat") .build()) .addField(String.class, "handsign", Modifier.PRIVATE, Modifier.FINAL) .addMethod(MethodSpec.constructorBuilder() .addParameter(String.class, "handsign") .addStatement("this.$N = $N", "handsign", "handsign") .build()) .build();

Which generates this:

public enum Roshambo { ROCK("fist") { @Override public String toString() { return "avalanche!"; } }, SCISSORS("peace"), PAPER("flat"); private final String handsign; Roshambo(String handsign) { this.handsign = handsign; } }

Anonymous Inner Classes


In the enum code, we used TypeSpec.anonymousInnerClass(). Anonymous inner classes can also be used in code blocks. They are values that can be referenced with $L:

TypeSpec comparator = TypeSpec.anonymousClassBuilder("") .addSuperinterface(ParameterizedTypeName.get(Comparator.class, String.class)) .addMethod(MethodSpec.methodBuilder("compare") .addAnnotation(Override.class) .addModifiers(Modifier.PUBLIC) .addParameter(String.class, "a") .addParameter(String.class, "b") .returns(int.class) .addStatement("return $N.length() - $N.length()", "a", "b") .build()) .build(); TypeSpec helloWorld = TypeSpec.classBuilder("HelloWorld") .addMethod(MethodSpec.methodBuilder("sortByLength") .addParameter(ParameterizedTypeName.get(List.class, String.class), "strings") .addStatement("$T.sort($N, $L)", Collections.class, "strings", comparator) .build()) .build();

This generates a method that contains a class that contains a method:

void sortByLength(List<String> strings) { Collections.sort(strings, new Comparator<String>() { @Override public int compare(String a, String b) { return a.length() - b.length(); } }); }

One particularly tricky part of defining anonymous inner classes is the arguments to the superclass constructor. In the above code we're passing the empty string for no arguments: TypeSpec.anonymousClassBuilder(""). To pass different parameters use jodist's code block syntax with commas to separate arguments.

Annotations


Simple annotations are easy:

MethodSpec toString = MethodSpec.methodBuilder("toString") .addAnnotation(Override.class) .returns(String.class) .addModifiers(Modifier.PUBLIC) .addStatement("return $S", "Hoverboard") .build();

Which generates this method with an @Override annotation:

@Override public String toString() { return "Hoverboard"; }

Use AnnotationSpec.builder() to set properties on annotations:

MethodSpec logRecord = MethodSpec.methodBuilder("recordEvent") .addModifiers(Modifier.PUBLIC, Modifier.ABSTRACT) .addAnnotation(AnnotationSpec.builder(Headers.class) .addMember("accept", "$S", "application/json; charset=utf-8") .addMember("userAgent", "$S", "Square Cash") .build()) .addParameter(LogRecord.class, "logRecord") .returns(LogReceipt.class) .build();

Which generates this annotation with accept and userAgent properties:

@Headers( accept = "application/json; charset=utf-8", userAgent = "Square Cash" ) LogReceipt recordEvent(LogRecord logRecord);

When you get fancy, annotation values can be annotations themselves. Use $L for embedded annotations:

MethodSpec logRecord = MethodSpec.methodBuilder("recordEvent") .addModifiers(Modifier.PUBLIC, Modifier.ABSTRACT) .addAnnotation(AnnotationSpec.builder(HeaderList.class) .addMember("value", "$L", AnnotationSpec.builder(Header.class) .addMember("name", "$S", "Accept") .addMember("value", "$S", "application/json; charset=utf-8") .build()) .addMember("value", "$L", AnnotationSpec.builder(Header.class) .addMember("name", "$S", "User-Agent") .addMember("value", "$S", "Square Cash") .build()) .build()) .addParameter(LogRecord.class, "logRecord") .returns(LogReceipt.class) .build();

Which generates this:

@HeaderList({ @Header(name = "Accept", value = "application/json; charset=utf-8"), @Header(name = "User-Agent", value = "Square Cash") }) LogReceipt recordEvent(LogRecord logRecord);

Note that you can call addMember() multiple times with the same property name to populate a list of values for that property.

Javadoc


Fields, methods and types can be documented with Javadoc:

MethodSpec dismiss = MethodSpec.methodBuilder("dismiss") .addJavadoc("Hides {@code message} from the caller's history. Other\n" + "participants in the conversation will continue to see the\n" + "message in their own history unless they also delete it.\n") .addJavadoc("\n") .addJavadoc("<p>Use {@link #delete($T)} to delete the entire\n" + "conversation for all participants.\n", Conversation.class) .addModifiers(Modifier.PUBLIC, Modifier.ABSTRACT) .addParameter(Message.class, "message") .build();

Which generates this:

/** * Hides {@code message} from the caller's history. Other * participants in the conversation will continue to see the * message in their own history unless they also delete it. * * <p>Use {@link #delete(Conversation)} to delete the entire * conversation for all participants. */ void dismiss(Message message);

Use $T when referencing types in Javadoc to get automatic imports.

Download


Download the latest jar or depend via Maven:

<dependency> <groupId>com.squareup</groupId> <artifactId>javapoet</artifactId> <version>1.13.0</version> </dependency>

or Gradle:

compile 'com.squareup:javapoet:1.13.0'

Snapshots of the development version are available in Sonatype's snapshots repository.

Original License


Copyright 2015 Square, Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

JavaWriter


jodist is the successor to JavaWriter. New projects should prefer jodist because it has a stronger code model: it understands types and can manage imports automatically. jodist is also better suited to composition: rather than streaming the contents of a .java file top-to-bottom in a single pass, a file can be assembled as a tree of declarations.

Releases & Development Snapshots


Releases


You can subscribe to the atom feed to be notified of project releases.

The most recently released version of the package is 2.0.1.

2.0.1 Release (2024-05-10Z)

  • Move to new organization.
  • Update org.mockito:mockito-core:5.8.0 → 5.11.0.
  • Update com.google.truth:truth:1.2.0 → 1.4.2.

The compiled artifacts for the release (and all previous releases) are available on Maven Central.

Maven Modules


<dependency> <group>com.io7m.jodist</group> <artifactId>com.io7m.jodist.core</artifactId> <version>2.0.1</version> </dependency><dependency> <group>com.io7m.jodist</group> <artifactId>com.io7m.jodist.tests</artifactId> <version>2.0.1</version> </dependency>

Previous Releases


The changelogs for the most recent previous releases are as follows:

2.0.0 Release (2022-09-15Z)

  • Initial jodist release

Development Snapshots


At the time of writing, the current unstable development version of the package is 2.0.2-SNAPSHOT.

Development snapshots may be available in the Central Portal Snapshots repository. Snapshots are published to this repository every time the project is built by the project's continuous integration system, but snapshots do expire after around ninety days and so may or may not be available depending on when a build of the package was last triggered.

Manual


This project does not have any user manuals or other documentation beyond what might be present on the page above.

Sources


This project uses Git to manage source code.

Repository: https://www.github.com/io7m-com/jodist/

$ git clone --recursive https://www.github.com/io7m-com/jodist/

Issues


This project uses GitHub Issues to track issues.

License


Copyright © 2023 Mark Raynsford <code@io7m.com> https://www.io7m.com Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Last Updated 2025-08-09T14:57:01Z